Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 238(3): 366-86, 1994 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-8176730

RESUMO

Conserved structural and functional features of Cu,Zn superoxide dismutase enzymes have been studied by comparison of known three-dimensional structures and analysis of the currently available amino acid sequences. For this purpose, the three-dimensional structures of the bovine, spinach and yeast enzymes have been superimposed and the structure-based sequence alignment of 38 different superoxide dismutases has been produced. The evolutionary tree obtained from the alignment indicates that cytosolic and extracellular enzymes followed independent evolutionary paths, and that horizontal gene transfer, if any, occurred at an early stage in eukaryota evolution. Based on the sequence alignment and on the analysis of clusters of spatially neighboring residues, the conservation/variation of functionally relevant intramolecular interactions has been investigated. Seven alternative residue arrangements have been identified in the upper rim of the active site, which form an important determinant of the electrostatic field at the catalytic center. The total nominal charge of this region is constantly -1 through the phyla. The seven residues which coordinate the two metal ions at the active site are conserved, with only one known exception. Among the residues involved in maintenance of the active site structure, Gly59, Gly80, Gly136 and Gly139 are fully conserved; mutations of Gly42 and Pro64 have been observed, concerted with replacements in their structural surroundings. Coordinated mutations affecting residue pairs which maintain the packing geometry of the Greek-key beta-barrel have been identified. Furthermore, the unique disulfide bridge involving Cys55-Cys144 in eukaryota, shows the alternative Cys50A-Cys144 arrangement in prokaryotic enzymes.


Assuntos
Superóxido Dismutase/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Bovinos , Gráficos por Computador , Cobre/química , Dissulfetos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/genética , Verduras/enzimologia , Leveduras/enzimologia , Zinco/química
2.
J Mol Biol ; 226(1): 227-38, 1992 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-1619651

RESUMO

The semisynthetic Co-substituted bovine erythrocyte superoxide dismutase (SOD) has been crystallized in a new crystalline form and the structure determined at 2.0 A (1 A = 0.1 nm) resolution. The crystals belong to space group P2(1)2(1)2(1) with cell constants: a = 51.0, b = 147.6, c = 47.5 A, and contain one dimeric molecule of 32,000 M(r) per asymmetric unit. The structure has been solved by molecular replacement techniques using the Cu,Zn bovine enzyme as a search model, and refined by molecular dynamics with the crystallographic pseudo-energy term, followed by conventional crystallographic refinement. The R-factor for the 18,964 unique reflections in the resolution range from 10.0 to 2.0 A is 0.176 for a model comprising 2188 protein atoms and 200 solvent molecules; the root-mean-square deviation from the ideal bond lengths is 0.010 A, and the average atomic temperature factor is 26.5 A2. The dimeric molecule of the enzyme is composed of two identical subunits related by a non-crystallographic 2-fold axis. The subunit has as its structural scaffolding the conventional SOD-flattened antiparallel eight-stranded beta-barrel, with three external loops. The co-ordination geometry of the metal center in the active site is fairly well preserved when compared with the native Cu,Zn bovine enzyme. Co2+ is in tetrahedral co-ordination, while the Cu2+ ligands show an uneven distortion from the square planar geometry. The least-squares superposition of the metals ligands and the catalytically important Arg141 of the native and Co-substituted enzyme yields a root-mean-square value of 0.401 A, the largest deviation occurring at the Co2+ ligand Asp81. An additional copper ligand, compatible with a water molecule, is observed at 2.38 A from Cu2+ in the active-site channel, at the supposed binding site of the O2- anion substrate. Several ordered water molecules have been observed on the protein surface and in the active-site channel; their structural locations coincide remarkably with those of related water molecules found in the crystal structure of the phylogenetically distant superoxide dismutase from yeast.


Assuntos
Cobalto/química , Eritrócitos/enzimologia , Superóxido Dismutase/química , Animais , Bovinos , Cobre/química , Cristalização , Substâncias Macromoleculares , Difração de Raios X , Zinco/química
3.
J Mol Biol ; 225(3): 791-809, 1992 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-1602482

RESUMO

The structure of Cu,Zn yeast superoxide dismutase has been determined to 2.5 A resolution. The enzyme crystallizes in the P2(1)2(1)2 space group with two dimeric enzyme molecules per asymmetric unit. The structure has been solved by molecular replacement techniques using the dimer of the bovine enzyme as the search model, and refined by molecular dynamics with crystallographic pseudo-energy terms, followed by conventional crystallographic restrained refinement. The R-factor for 32,088 unique reflections in the 10.0 to 2.5 A resolution range (98.2% of all possible reflections) is 0.158 for a model comprising two protein dimers and 516 bound solvent molecules, with a root-mean-square deviation of 0.016 A from the ideal bond lengths, and an average B-factor value of 29.9 A2. A dimeric molecule of the enzyme is composed of two identical subunits related by a non-crystallographic 2-fold axis. Each subunit (153 amino acid residues) has as its structural scaffolding a flattened antiparallel eight-stranded beta-barrel, plus three external loops. The overall three-dimensional structure is quite similar to the phylogenetically distant bovine superoxide dismutase (55% amino acid homology), the largest deviations can be observed in the regions of amino acid insertions. The major insertion site hosting residues Ser25A and Gly25B, occurs in the 2,3 beta-turn between strands 2b and 3c, resulting in the structural perturbations of the two neighbouring strands. The second insertion site, at the end of the 3c beta-strand in the wide Greek-key loop, hosts the Asn35A residue, having an evident effect on the structure of the loop and possibly on the neighbouring 5,4 beta-turn. The salt bridge Arg77-Asp99 and the disulphide bridge Cys55-Cys144 stabilize the loop regions containing the metal ligands. The stereochemistry of the two metal centres is conserved, with respect to the bovine enzyme. The Cu2+ ligands show an uneven distortion from a square plane, while Zn2+ co-ordination geometry is distorted tetrahedral. The imidazole ring of the His61 residue forms a bridge between Cu and Zn ions. A solvent peak compatible with a fifth ligand is observed 2.0 A away from the copper in the active site channel, which is filled by ordered water molecules that possibly contribute to the stability and function of the enzyme. The charged residues responsible for the electrostatic guidance of the substrate to the active site (Glu130, Glu131, Lys134 and Arg141) are fairly conserved in their positions, some of them showing different interactions in the four chains due to the intermolecular contacts between the dimers.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Superóxido Dismutase/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia , Difusão , Eletroquímica , Ligação de Hidrogênio , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Solventes , Superóxido Dismutase/química , Difração de Raios X , Leveduras/enzimologia
4.
J Mol Biol ; 223(1): 337-42, 1992 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-1731078

RESUMO

Equipotential lines were calculated, using the Poisson-Boltzmann equation, for six Cu,Zn superoxide dismutases with different protein electric charge and various degrees of sequence homology, namely those from ox, pig, sheep, yeast, and the isoenzymes A and B from the amphibian Xenopus laevis. The three-dimensional structures of the porcine and ovine superoxide dismutases were obtained by molecular modelling reconstruction using the structure of the highly homologous bovine enzyme as a template. The three-dimensional structure of the evolutionary distant yeast Cu,Zn superoxide dismutase was recently resolved by us, while computer-modelled structures are available for X. laevis isoenzymes. The six proteins display large differences in the net protein charge and distribution of electrically charged surface residues but the trend of the equipotential lines in the proximity of the active sites was found to be constant in all cases. These results are in line with the very similar catlytic rate constants experimentally measured for the corresponding enzyme activities. This analysis shows that electrostatic guidance for the enzyme-substrate interaction in Cu,Zn superoxide dismutases is related to a spatial distribution of charges, arranged so as to maintain, in the area surrounding the active sites, an identical electrostatic potential distribution, which is conserved in the evolution of this protein family.


Assuntos
Superóxido Dismutase/química , Animais , Sítios de Ligação , Evolução Biológica , Bovinos , Eletroquímica , Proteínas Fúngicas/química , Saccharomyces cerevisiae/enzimologia , Ovinos , Suínos , Xenopus laevis
5.
Acta Crystallogr B ; 47 ( Pt 6): 918-27, 1991 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-1772629

RESUMO

Cu,Zn yeast superoxide dismutase was crystallized from polyethylene glycol solutions. The crystals belong to the P2(1)2(1)2 space group, with cell dimensions a = 105.3, b = 143.0, c = 62.1 A; two dimers of Mr = 32,000 each are contained in the asymmetric unit. Diffraction data at 2.5 A resolution were collected with the image-plate system at the EMBL synchrotron radiation facility in Hamburg. The structure was determined by molecular replacement using as a search model the 'blue-green' dimer of the bovine Cu,Zn superoxide dismutase. The crystallographic refinement of the molecular replacement solution was performed by means of molecular dynamics techniques and resulted in an R factor of 0.268 for the data between 6.0 and 2.5 A. The model was subsequently subjected to conventional restrained crystallographic refinement of the coordinates and temperature factors. The current R value for the data between 6.0 and 2.5 A is 0.220. Owing to the large radius of convergence of the molecular dynamics-crystallographic refinement, the convergence of the refinement process was reached after 18.1 ps of simulation time. The geometry of the active site of the enzyme appears essentially preserved compared with the bovine superoxide dismutase. The beta-barrel structure in the yeast enzyme is closed at the upper part by an efficient hydrogen-bonding scheme.


Assuntos
Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/química , Sequência de Aminoácidos , Animais , Bovinos , Cristalização , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...